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ABSTRACT

This article presents a verification and validation study of the stochastic particle-resolved aerosol
model PartMC. Model verification was performed against self-preserving analytical solutions, while
for validation three experiments were performed where the size distribution evolution of
coagulating ammonium sulfate particles was measured in a cylindrical stainless steel chamber. To
compare with the chamber measurements, PartMC was extended to include the representation of
fractal particle structure and wall loss. This introduced five unknown parameters to the governing
equation, which were determined by a combination of scanning electron microscopy (SEM) analysis
and an objective optimization procedure. Excellent agreement between modeled and measured
size distributions was achieved using the same set of parameters for all three experiments.
Assuming spherical particles led to model results that were inconsistent with the measurements.
The best agreement between model and measurement was obtained for the fractal dimension of
2.3, indicating that the non-spherical structure of the particle agglomerates in the chamber needed
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to be taken into account.

1. Introduction

Stochastic particle methods are widely used across
different communities in science and engineering.
Gillespie (1975) set a milestone in applying this tech-
nique to the evolution of physical particle popula-
tions by developing the exact stochastic simulation
algorithm (SSA) to simulate the collision of cloud
droplets. Since then many studies have developed
this method further (Eibeck and Wagner 2001;
Gillespie et al. 2009; Roh et al. 2011). Variants of
this method have been used to investigate the
evolution of specific particle systems, for example,
for aerosol applications in industry (Wells et al
2006; Shekar et al. 2012), astrophysics (Ormel and
Spaans 2008; Okuzumi et al. 2009), oceanography
(Jokulsdottir and Archer 2016), and atmospheric
sciences (Shima et al. 2009; Riemer et al. 2009).

This article applies the stochastic particle-resolved
“Particle Monte Carlo” model PartMC (Riemer et al.
2009) to the simulation of aerosol particles in an aerosol
chamber. PartMC was developed to simulate the

evolution of aerosol particles in the atmosphere. Atmo-
spheric aerosol particles typically consist of a complex
mixture of different chemical species, with sizes ranging
from a few nanometers to tens of micrometers (Poschl
2005; Seinfeld and Pandis 2006; Kolb and Worsnop
2012). The particle-resolved approach is suitable for
modeling such a system, as it explicitly resolves the full
composition space without any a priori assumptions
about particle composition. Since the per-particle com-
position governs the aerosols’ optical properties and their
ability to form cloud droplets, these details are important
for determining the aerosol impact on climate (Zaveri
et al. 2010).

The PartMC model was coupled with the state-of-the-
art aerosol chemistry model MOSAIC (Zaveri et al.
2008) to treat gas chemistry, particle phase thermody-
namics, and dynamic gas-particle mass transfer.
PartMC-MOSAIC has been used to simulate aerosol pro-
cesses in the atmosphere for a wide range of topics. For
example, Riemer et al. (2010) and Fierce et al. (2015)
applied the model to quantify black carbon aging time
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scales. Ching et al. (2012) and Ching et al. (2016) investi-
gated the impact of aerosol mixing state on cloud droplet
formation. Other model applications included the heter-
ogenous oxidation of soot surfaces (Kaiser et al. 2011),
and the characterization of the aerosol evolution in ship
plumes (Tian et al. 2014).

The contributions of this study are the verification
and validation of PartMC to simulate aerosol pro-
cesses in a chamber environment. We use the term
“verification” here to refer to “the process of deter-
mining that a computational model accurately repre-
sents the underlying mathematical model and its
solution,” and “validation” to refer to “the process of
determining the degree to which a model is an accu-
rate representation of the real world from the per-
spective of the intended uses of the model” (ASME
2006). This study not only necessitated implementing
chamber-specific loss processes such as wall loss and
sedimentation, but also required representing fractal-
like agglomerates and developing an objective optimi-
zation procedure to estimate required model parame-
ters. As such, this article lays the foundation for
using PartMC as a tool to interpret and design aero-
sol chamber experiments in the future.

The manuscript is organized as follows. Section 2
states the governing equation for the evolution of the
population in the chamber environment and describes
the treatments of wall loss and fractal particle dynamics
in our PartMC model. Section 3 presents the verification
of the coagulation code using self-preserving size distri-
butions. Section 4 describes the chamber experiments
and presents the code validation procedure, and Section
5 summarizes our findings.

2. Model description

2.1. Governing equation for the chamber
environment

Our aim was to simulate the evolution of an aerosol
particle population after it is introduced into an aero-
sol chamber. To isolate the impact of coagulation and
wall loss on the size distribution evolution, additional
particle emissions are not introduced after the start of
the simulation. Further, we consider only the evolu-
tion of a single, non-volatile aerosol species in the
chamber, excluding gas-to-particle conversion and
aerosol chemistry in our current model framework.
The relevant processes are therefore coagulation, dilu-
tion, and wall losses due to diffusion and sedimenta-
tion. We assume that the aerosol population in the
chamber is well-mixed, which justifies a box model
approach. The differential equation governing the

AEROSOL SCIENCE AND TECHNOLOGY 857

time evolution of the aerosol size distribution n(u,t)
in the chamber environment is

"
On(u 1) = 1/ K(v, . —v)n(v, t)n(p — v, t)dv
ot 2/,

coagulation gain

_/000 K(p,v)n(u, t)n(v, t)dv

coagulation loss

—n(w, £)Aan(t) —n(u,t)( ag(t)
— ——

dilution wall diffusion

+ aS(t) ). (1]

sedimentation

In Equation (1), K(11,v) (m’s™") is the coagulation coef-
ficient between particles with constituent masses © and
v, n(p, t) (m™> kg™') is the aerosol number distribution
at time t, Aqy(t) (s ') is the dilution rate, and «°(¢) (s™%)
and o(t) (s7') are the wall loss rate coefficients due to
diffusion and sedimentation, respectively.

2.2. The PartMC simulation algorithm

PartMC is a 0-D or box model that solves Equation (1).
It explicitly resolves the composition of many individual
aerosol particles within a well-mixed computational vol-
ume, making this a “particle-resolved” simulation.
A detailed description of the numerical methods used in
PartMC is given in Riemer et al. (2009) and DeVille et al.
(2011). The code is open-source under the GNU General
Public License (GPL) version 2 and can be downloaded
at http://lagrange.mechse.illinois.edu/partmc/.

In brief, the particle population in the volume of
interest is resolved by a large number of discrete compu-
tational particles, in our applications typically on the
order of 10* to 10° The relative positions of particles
within the computational volume are not tracked. Over
the course of the simulation, the mass of each constituent
species within each particle is tracked. The relevant pro-
cesses for this study, namely, Brownian coagulation,
dilution, and wall losses due to diffusion and sedimenta-
tion, are simulated with a stochastic Monte Carlo
approach by generating a realization of a Poisson pro-
cess. Using the “weighted flow algorithm” by DeVille
et al. (2011) improves the model efficiency and reduces
ensemble variance.
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We used 10° computational particles to initialize the
simulations shown in this article. If the number of
computational particles drops below half of the initial
number because of the various loss processes, the num-
ber of particles is doubled by duplicating each particle,
which corresponds to a doubling of the computational
volume. This is a common Monte Carlo particle model-
ing approach to maintain accuracy (Liffman 1992). To
quantify the stochastic error of the PartMC simulations,
we repeated each simulation with different random seeds
and calculated means and standard deviations. The num-
ber of repeats, N,,,, was set to 10 in our case. The stan-
dard deviation of the size distribution obtained from the
ensemble runs is the uncertainty from PartMC, denoted
by Opartme Which is divided by /Ny, to obtain the
uncertainty in the mean (the SEM or standard error of
the mean).

For the code development in this study, we branched
from PartMC version 2.2.0 to implement the chamber
wall loss treatment (Section 2.3), and extended the treat-
ment of Brownian coagulation to include fractal particles
(Section 2.4). The additions are available in version 2.4.0.

2.3. Chamber wall loss treatment

A challenge for chamber studies arises from quantifying
wall losses due to particle diffusion and sedimentation to
the chamber wall. Misestimation of these wall losses can
result in inaccurate interpretation of the experimental
results, as shown, for example, for secondary aerosol
yield measurements by Matsunaga and Ziemann (2010).
Modeling wall loss is difficult because the process can
depend on aerosol particle size, the material of the cham-
ber, the electric charge distribution, and the turbulence
in the chamber. Past studies have proposed detailed for-
mulations to quantify the wall loss rate (Crump and
Seinfeld 1981; McMurry and Rader 1985; Park et al.
2001; Verheggen and Mozurkewich 2006). They often
introduce parameters that are difficult to constrain and
that might vary between different experiments. There-
fore, inverse approaches that use size distribution meas-
urements to constrain these unknown parameters are
often conducted to obtain the functional forms of wall
loss rate (Pierce et al. 2008).

In this study, we followed the method to parameterize
wall losses by Naumann (2003), which is based on Fuchs
(1964) and van de Vate and ten Brink (1980). The wall
loss rates due to diffusion and sedimentation are size-
dependent and given by

S__4npR;MgD(Rm&M)AS

= (3]
" 3kTV

o

In Equations (2) and (3), D(Rme,u) (m%s™ ) is the dif-
fusion coefficient for particle i, Ry, (m) is the particle
mobility equivalent radius of particle u, Ap (m?) is the
diffusional deposition area, §p (m) is diffusional bound-
ary layer thickness, and V (m?) is the volume of the
chamber. The thickness dp, has the following formulation
based on Fuchs (1964) and Okuyama et al. (1986),

5 = ko <D30> , 4]

where kp (m) is a chamber-specific parameter that can
vary between different experimental set-ups. The con-
stant a is a coefficient that was theoretically determined
by Fuchs (1964) to be 0.25, and Dy = 1 m?s™! is the unit
diffusion coefficient, which is formally needed to obtain
dimensional consistency. In Equation (3), Ry, ,(m) is
particle mass-equivalent radius of particle u, and As
(m?) is the sedimentation area. As shown in Section 4.2,
the unknown parameters in the wall loss equations, kp
and g, are determined through an optimization proce-
dure based on particle size distribution measurements.

2.4. Fractal particle treatment

Irregular, fractal-like particles, including soot (Lapuerta
et al. 2006; Moldanova et al. 2009) and soot-inorganic
mixtures (Wentzel et al. 2003), are ubiquitous in both
natural environments and technical applications. In
addition, fractal-like agglomerates can also be formed
from packing of spherical primary particles (Eggersdor-
fer and Pratsinis 2014). These particles exhibit signifi-
cantly different dynamics and optical properties from
those of spherical particles (Chen et al. 1990; Wu and
Friedlander 1993; Sorensen 2001; Pranami et al. 2010),
such as enhanced coagulational growth due to the
increased collision cross-section. In this study, we imple-
mented the formalism of fractal particles described in
Naumann (2003). As we will show in Section 4.3, this is
essential to successfully model the evolution of the
observed size distributions. Details of the model imple-
mentation can be found in Section 1 of the online sup-
plemental information (SI). In general, the number of
monomers, N, in a fractal-like agglomerate can be related
to the particle geometric radius Ry, by

ds
N:} <RRgeO> , [5]
0
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Figure 1. Self-preserving size distributions in the free molecular regime (left panel) and continuum regime (right panel) obtained from
PartMC simulations (symbols) and the Vemury and Pratsinis (1995) code (lines) at different fractal dimensions (d;). The error bars repre-
sent 95% confidence intervals from 10 ensemble runs. The self-preserving size distribution is defined in Equation (S-12).

where f is the volume filling factor quantifying how
much of the available volume will be occupied by spheri-
cal monomers, R, (m) is the radius of the monomers,
and d; is the fractal (or Hausdorff) dimension that deter-
mines the growth rate of fractal agglomerates due to col-
lision processes (Wu and Friedlander 1993). Similar to
the wall loss parameters kp and g, the fractal dimension
dr is an unknown parameter in our simulation, which
will also be determined by the optimization procedure
detailed in Section 4.2.

An important, implicit assumption of the Naumann
(2003) formalism is that the number of monomers N
is sufficiently large, i.e., larger than 100, as shown by
the analysis in Sorensen (2011). Since in our case N is
smaller than 100, care has to be taken with interpret-
ing the results, and we will discuss this issue in detail
in Section 4.3. We further assume the primary par-
ticles constructing the fractal agglomerates are non-
overlapping, equal-size spheres (constant R,;) with
homogenous density, which is a common assumption
in theoretical analyses (Ulrich and Subramanian 1977;
Koch and Friedlander 1990). We also assume that ds
and f will not change during the evolution of particles,
although studies have argued that the fractal dimen-
sion may change as the size distribution of fractal
agglomerates evolves (Kostoglou and Konstandopoulos
2001; Artelt et al. 2003). We will justify these assump-
tions in Section 4.2.1.

3. Model verification of fractal treatment

When Brownian coagulation is the dominant mecha-
nism for particle growth, particle size distributions
assume an asymptotic shape after a sufficiently long
time, independent of the initial size distribution (Fried-
lander and Wang 1966; Friedlander 2000). These so-

called self-preserving size distributions are represented
by graphing the dimensionless particle number density
function ¥(n) as a function of the dimensionless particle
volume 1 (Equation (S-12)). The detailed formalism is
provided in Section 2 in the SI.

In this study, the implementation of the fractal parti-
cle treatment in PartMC was verified by comparing the
simulated self-preserving size distributions to those from
theoretical results reported in Vemury and Pratsinis
(1995) in both free molecular and continuum regimes.
We followed the scenario set-up and model initialization
of Vemury and Pratsinis (1995) as well as Naumann
(2003).

Figures 1 and 2 show the verification of the size distri-
butions and the total number concentrations, respec-
tively, for different fractal dimensions. Perfect agreement
is observed, confirming the successful implementation of
the fractal particle treatment in PartMC. The error bars
in Figure 1 show the 95% confidence intervals from 10
ensemble PartMC runs. They were too small to be visible
in Figure 2. The decay of normalized number concentra-
tions in Figure 2 is graphed vs. dimensionless times t¢
(free molecular regime) and 7. (continuum regime). The
dimensionless times 7; and t. are defined in Equations
(S-13) and (S-14), respectively.

4, Comparison with measurements for
validation

4.1. Chamber measurements

Experiments were conducted in a 209 L, cylindrical,
stainless steel chamber (Figure S-1) that was electrically
grounded. The chamber was filled during the first 6 or
10 min (see below for details) of each experiment with
dried, poly-disperse, charge-neutralized ammonium
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Figure 2. Normalized number concentration decay as a function of dimensionless time obtained from PartMC simulations (symbols) and
the Vemury and Pratsinis (1995) code (lines) for various dr values in free-molecular regime (left panel) and continuum regime (right panel).
The dimensionless time is defined in Equation (S-13) for the free molecular regime and Equation (S-14) for the continuum regime.

sulfate aerosol that was generated by atomizing an aque-
ous 0.0001 gcm > ammonium sulfate solution with a
constant output atomizer (Model 3076, TSI Inc., Shore-
view, MN, USA; Figure S-1a). The aerosol generated was
dried with a custom silica gel diffusion dryer and charge
neutralized with a custom neutralizer (BMI Inc,
Hayward, CA, USA) containing four 500 @ C Polonium
210 sources (Staticmaster 2U500, Amstat Corp., Munde-
lein, IL, USA). The aerosol was then diluted with 26.5
L min~" of dry, particle-free air (generated by passing
through a high efficiency particle air [HEPA] filter), and
particles with an aerodynamic diameter greater than
500 nm were removed with a greased two-stage Berner-
type impactor (Berner et al. 1979) before entering the
chamber. The pressure during filling was equilibrated by
leaving the sampling port open into the laboratory fume
hood.

After filling the chamber with atomized aerosol, the
atomizer setup was disconnected from the chamber and
the evolution of the size distribution was measured every
7 min with a modified scanning mobility particle sizer
instrument (SMPS, TSI Instruments, 3934, Figure S-1b).
This instrument consisted of a Polonium 210 neutralizer
(Amstat Corp., Staticmaster 2U500), a differential mobil-
ity analyzer (DMA, TSI3071A), and a condensation par-
ticle counter (CPC, TSI 3022A) operating in low flow
mode (0.3 Lmin~'). A modification of the original
instrument’s configuration was the use of a HEPA-
filtered recirculating sheath airflow that was set to 2.4
L min~". Air flow rates were checked and adjusted by
comparing them to a primary standard airflow calibrator
(Gilian Gilibrator, Sensidyne Corp., St. Petersburg, FL,
USA) for each experiment. The voltage up-scan time was
set to 300 s and the down-scan time was set to 60 s.
These settings allowed a sizing range of particle diame-
ters between 15.4 and 1000 nm. The delay time and

sizing accuracy of the SMPS system was evaluated by
performing up- and down-scans for 200 & 5 nm and 350
+ 6 nm mono-disperse polystyrene latex (PSL) spheres
(3200A/3350A, Thermo Scientific Corp., Waltham, MA,
USA). The aerosol instrument manager software (TSI
AIM Version 9.0, TSI Inc.) was used to collect and pro-
cess the data from the SMPS system. The embedded
multiple particle charge correction inversion algorithm
from the TSI aerosol instrument manager software
accounted for multiply charged particles. The pressure
during sampling was equilibrated by having a bleed port
at the chamber inlet. The measurements have estimated
uncertainties of 1.5% for the flow rate (oqow), and of 5%
for determining the particles size (0yy,.). In addition,
Poisson statistics were applied to approximate the raw
count uncertainty (G count)-

Three experiments were performed with Experiments
1 and 2 having a chamber filling time of 6 min and
Experiment 3 having a filling time of 10 min. The initial
size distributions for the simulations were taken to be
the measured distributions after filling was completed.
The code directly read in the particle number counts in
the SMPS size bins. As a summary, the initial number
concentrations, mean diameters, and standard deviations
are listed in Table 1.

The evolution of the particle size distribution was
tracked in each experiment for a minimum of 5 h. The

Table 1. Initial conditions for ammonium sulfate experiments
from UIUC chamber measurements.

Initial conc. Initial mean Initial standard
Exp.IDr (em™3) diam. (nm) dev. (nm)
1 4275 -10° 114 539
2 3.548 - 10° 93.2 53.8
3 1.196 - 10° 715 489




relative humidity and temperature monitored near the
inlet and at the outlet of the chamber ranged from 3.2 to
9.1% and from 19.5 to 22.2°C, respectively, for all experi-
ments. Temperature and relative humidity were mea-
sured with a Sensirion SHT-75 sensor (Sensirion Corp.,
Stafa, Switzerland).

Filter samples were collected at the end of each experi-
ment by drawing the barrel's remaining contents
through 47 mm PTFE Membrane Filters (FGLP04700,
Merck Millipore, Billerica, MA, USA). These samples
were then used in scanning electron microscopy (SEM)
imaging to obtain information about the microstructure
of particles. The instrument was an FEI Company (Hills-
boro, OR, USA) XL30 ESEM-FEG environmental scan-
ning electron microscope, operated in HiVac mode. The
imaging parameters were 5 kV and spot size 3 (2.1 nm)
at a 10-mm working distance. The samples were received
dry, mounted on aluminum stubs with double-stick car-
bon tabs (SPI Supplies, West Chester, PA, USA), sputter
coated (Desk-2 turbo sputter coater, Denton Vacuum,
Moorestown, NJ, USA) with ca. 6 nm of gold-palladium,
and grounded using Flash-Dry (SPI Supplies) silver paint
before imaging.

4.2. Determination of model parameters

Including wall loss and fractal dynamics introduces five
unknown parameters in the governing equation, namely,
two parameters in Equation (4) for the wall loss treat-
ment (prefactor kp and exponent a), and three in
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Equation (5) (fractal dimension dj, radius of primary
particles Ry, and volume filling factor f). As we will show
in Section 4.2.1, we used SEM images to estimate the
parameters fand Ry. We determined the remaining three
parameters by a global optimization procedure as
described in Section 4.2.2.

4.2.1. Determination of parameters f and R,
Figure 3 shows the SEM images of the filters at the end of
Experiment 1, after about 6 h of evolution. The particles
show as bright agglomerates, some of which are
highlighted with red circles in Figure 3. Note that the
fibrous and smoother agglomerated material is the Tef-
lon filter. The images reveal that over the course of the
experiment, the dry ammonium sulfate particles formed
agglomerates consisting of spherical primary particles.

SEM images were analyzed using image analysis soft-
ware (Image] version 10.2, NIH) to estimate the values
of the radius of primary particles R, and the volume fill-
ing factor f. The primary particles are not mono-disperse,
but show a size distribution with a number-based
median diameter of about 90 nm. Figure S-2 shows the
histogram of the size distribution of 130 particles identi-
fied from the SEM images. Since in the current model
implementation, the primary particle size is set to a con-
stant value during the entire simulation time, we tested
the sensitivity of the predicted size distribution to differ-
ent R, values.

Figure S-3 shows the comparison of the number dis-
tribution at t = 280 min from Experiment 1 using three

Figure 3. Scanning electron microscope (SEM) images of the particle filter from Experiment 1 at different resolutions. The fibrous and

smoother agglomerated material is the Teflon filter.
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R, values: 15 nm (the smallest), 45 nm (medium), and
80 nm (maximum). All other parameters are kept con-
stant for the three simulations. The resulting size dis-
tributions have a maximum percentage difference
(between the simulations with R, = 15 nm, and 80
nm) of 24% at a particle diameter of 100 nm, and 5%
at 200 nm. Based on the uncertainty quantification as
described below in Section 4.2.2, we can estimate the
overall measurement uncertainty as 40% and 15% at
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Figure 4. Simulated (“PartMC”) and measured (“Barrel”) particle
size distributions from Experiment 1 at 7 min, 70 min, and
210 min (top to bottom). Shaded areas represent £+ 3o as
described in Equation (7). The highest line (blue curve) in the bot-
tom panel represents the simulated distribution assuming d; = 3.

100 nm and 200 nm, respectively (see the light gray
[orange band] in Figure 4). We therefore conclude
that even extreme variations in R, values cause varia-
tions of the results that remain within the measure-
ment uncertainties. This justifies setting R, to a fixed
value, and we chose 45 nm, which is the median
radius from the sample.

The volume filling factor f accounts for the fact
that the spherical primary particles can occupy only
as much as 74% of the available volume. Given the
closely packed structure as shown in Figure 3, we
assumed that 70% of the available volume would be
occupied by the monomers (close to the extreme
case), corresponding to an f value of 1.43. Similarly
to the sensitivity test regarding R,, we tested the sen-
sitivity to the choice of parameter f. Figure S-4 shows
the number distribution comparison from simulation
results using f = 1.35, 1.43, and 2.0, corresponding to
the monomers occupying 74%, 70%, and 50% of the
available volume, respectively. The maximum percent-
age difference (between f = 1.35 and 2.0) is again
small, being equal to 25% at a particle diameter of
100 nm and 14% at 200 nm. Therefore, a fixed f value
of 1.43 was chosen for the model simulation.

4.2.2. Optimization procedure

With the determination of R, and f values in the previous
section, the governing equation described in Section 2
now has three unknown parameters remaining: kp and a
in Equation (4) for the wall loss calculation, and d; in
Equation (5) for the fractal formalism. To find the
appropriate values for these unknown parameters,
inverse approaches using non-linear least-square fitting
optimization on size distribution measurements have
often been conducted (Pierce et al. 2008). We applied a
similar approach in this study. To determine the combi-
nation of free parameters that gives the best agreement
between simulation and measurements, we produced an
ensemble of simulations for which we varied the parame-
ters systematically between simulations. The best fit was
determined when a chosen error metric was minimized
across all simulations.

We jointly optimized kp, a, and d; by exhaustively
searching over a pre-defined parameter domain. We
considered all combinations of (kp, a, df) with kp, varying
from 0.025 m to 0.095 m with increments of 0.005 m, a
varying from 0.22 to 0.27 with increments of 0.01, and d¢
varying from 1.5 to 3.0 with increments of 0.1. These val-
ues are within the ranges reported in previous studies
(Bunz and Dlugi 1991; Naumann 2003) and included the
minimum in the interior of the domain. This amounts to
a total of 14,400 simulations, generated by 15 x 6 x 16



cases, with each case repeated 10 times with different
random seeds.

We define E,; to be the weighted ¢*-norm of the dif-
ference in the discretized number size distributions of
simulation and measurement at time j for experiment
number r:

in 1
Er,j = \/ZNb - 2 (nsim,r,i,j - nmea,r,i,j)za (6]

=1 (ors)"

where #gm ri; and ey, are the simulated and mea-
sured number concentration densities in size bin i at
time j for experiment r, respectively, and Ny, is the num-
ber of size bins. The weighting factor o,,; is the uncer-
tainty that arises from both the measurement and the
simulation. Similar to the approach in Moore et al.
(2010), the total uncertainty at time j for the ith size bin
and experiment r is

run

2 1

Orij= \/Gﬁow + O'giZe + (Gcount,r,i,j) + N.
(7]
The total error metric, ¢,, for experiment r is defined

as the root mean square of the relative errors over the
entire simulation period:

1 N
TR

where N is the total number of time steps. The three
experiments are combined by taking the root mean
square error to give the total error ¢ by

=/ (1) + () + (53" 9]

The best-fit values for kp, a, d¢ are found by determin-
ing the minimum value of &:

(kp,a,ds) = argminkéﬁu/vdfr S(k{),a,,df/)- [10]

Care has to be taken regarding the physical interpreta-
tion of the dr value obtained, since our aggregates only
contain a small number of monomers. The implications
of this fact are discussed in the next section.

4.3. Results

With datasets from three experiments available, we per-
formed the optimization procedure on the data from all
experiments combined. We obtained kp = 6.0 cm, a =

(Upartmc,r,iJ) ? .
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0.26, and df = 2.3 as best fit estimates with the errors
& = 8.09, &, = 9.62, and &; = 14.91 for Experiments 1, 2,
and 3, respectively.

The coefficient kp is proportional to the laminar
boundary layer and can vary between different experi-
mental setups (Bunz and Dlugi 1991). Our best estimate
for kp (6.0 cm) is very similar to the results by van de
Vate and ten Brink (1980) who determined kp = 4.8 cm
as their best fit. Bunz and Dlugi (1991), in contrast,
found best agreement by reducing kp, to 0.5 cm. For the
parameter a, Bunz and Dlugi (1991) reported a value of
0.25 from previous theoretical derivations by Fuchs
(1964) and 0.274 from their experiments. Our optimal
values for a is 0.26, close to these previously reported val-
ues. Our optimal fractal dimension of 2.3 is clearly below
the value of 3 for spherical particles, but it is significantly
higher than the value of 1.78 & 0.1 predicted by diffu-
sion-limited cluster-cluster aggregation (DLCA) theory
(Sorensen 2011).

In our case, the reason that d; is higher than the theo-
retically expected value can be explained by the fact that
the aggregates only contain a small number of mono-
mers (N < 100). As described in Sorensen (2011), in this
case the scaling of the mobility diameter R,,. can be writ-
ten as

Rype = BRy o BN/ o N~ OB3N 1/ [11]

where af is the true fractal dimension. As detailed in the
SI, Equation (S-3), we are using the Naumann (2003)
relationship

Rine = hxrRgeo = hxr Ro(fN) /% oc NV [12]

Importantly, hxgr does not depend on N, and so we see
that in the small-N case the parameter d; in the
Naumann (2003) model that we use is in fact the mass-
mobility scaling exponent D,, described by Sorensen
(2011), which is defined by the relationship
Rpye oc N1/Po,

Equating Equations (11) and (12) gives a relationship
between the fitted parameter d;y and the true fractal
dimension fif:

NNV o R o NV [13]

From our optimization procedure, we obtain the value
df = 2.3, so equating the exponents of N in (13) allows us
to compute that the true fractal dimension implied by
our model is df=1.78. This matches the theoretically
expected value of 1.78 £ 0.1 for DLCA processes
(Sorensen 2011).
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Figure 5. Time evolution of simulated (“PartMC”) and experimen-
tally determined (“Barrel”) mean diameter, standard deviation of
size distribution, and skewness of size distributions (top to bot-
tom) for Experiment 1.

Figure 4 shows the evolution of measured and simu-
lated number size distributions at 7 min, 70 min, and
210 min for Experiment 1 using the best-estimate
parameters for this experiment. The number size distri-
butions in Figure 4 and similar figures are shown as a
function of mobility diameter. The shaded areas indicate
the estimated uncertainty based on Equation (7) with the
width of 30, i.e., we expect 99% of the values to be within
the bounds of the shaded range. Note that the maximum
values on the vertical axes change between the three
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Figure 6. Sensitivity of free parameters kp, a, and d; on model-
measurement comparison results described by the value of root
mean square error ¢ for the combined optimization procedure.
When a parameter was varied, the other two parameters were
fixed at their optimal value.

panels to ensure readability. For the entire simulation
time of about 3.5 h, the simulated distributions match
the experimental results within the uncertainties. This is
further shown by displaying the time evolution of several
key parameters of measured and simulated size distribu-
tions, including mean diameter, standard deviation, and
skewness, as shown in Figure 5. For comparison, we also
simulated the size distribution when spherical particles
are assumed throughout the entire simulation (blue trace



in the right-most panel of Figure 4). This simulation
result does not capture the measured distribution, con-
firming the need to include the treatment for fractal
particles.

Figures S-5 and S-6 in the SI show the results for all
three experiments. Except for one occasion (Experiment
3, after 7 min) all model results are within the range of
the uncertainties. Overall, the good agreement between
PartMC simulations and chamber measurement indi-
cates that the model is able to capture the evolution of
particles in a chamber environment undergoing Brow-
nian coagulation and wall losses.

We further quantified the relative importance of parti-
cle loss due to coagulation and wall loss with two addi-
tional sensitivity runs for which coagulation and wall
loss were disabled, respectively (Figure S-7). For Experi-
ment 1, after around 5 h, wall loss and coagulation
accounted for an additional 5% and 20% of particle loss,
respectively, hence both processes are important in
shaping the aerosol size distribution, but coagulation
dominates.

A potential concern with an optimization proce-
dure as used in this work is that different combina-
tions of free parameters may result in errors of
similar magnitude. To investigate this, we show in
Figure 6 the dependence of ¢ on each of the three
parameters individually, while keeping the other two
constant and equal to their optimal values. These
curves should exhibit a clear minimum within the
range of parameters used, which then indicates the
optimal parameter combination. From this figure we
also learn that the fractal dimension d; is always the
dominant factor determining &, compared to kp and
a. This is in agreement with our finding that coagula-
tion is relatively more important than wall loss
(Figure S-7) and in line with the results by Naumann
(2003).

Lastly, we checked to what extent the parameters kp,
a, and dr and the error & change when the optimization
procedure is performed on each experiment individually.
As expected, the error decreases when the optimization
is performed individually, namely, by 15%, 24%, and
4.5% for Experiments 1, 2, and 3, respectively. While the
optimal parameter values are not identical for the three

Table 2. Comparison of the optimal parameters obtained by opti-
mizing over all three experiments combined and optimizing over
each experiment individually.

Optimization kp (m) a ds
Combined 0.060 0.26 23
Indiv. Exp. 1 0.060 0.26 2.2
Indiv. Exp. 2 0.070 0.22 23
Indiv. Exp. 3 0.040 0.25 24
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experiments, they remain in a relatively small range,
with kp between 0.040 m and 0.070 m, a between 0.22
and 0.26, and d; between 2.2 and 2.4 (Table 2). This find-
ing is consistent with our initial approach of performing
the optimization procedure on the data from all experi-
ments combined.

5. Conclusions

We conducted verification and validation of the stochas-
tic particle-resolved aerosol model PartMC. Verification
was performed against self-preserving analytical solu-
tions, while for validation we performed three experi-
ments with coagulating ammonium sulfate particles in a
cylindrical stainless steel chamber under a range of input
conditions and measured the evolving aerosol size
distributions.

To compare with the chamber measurements, we
extended PartMC to include the representation of fractal
particle structure and wall loss. Including wall loss and
fractal dynamics in the governing equation introduced
five unknown parameters. We constrained two of them
(radius of the primary particles Ry and volume filling fac-
tor f) using SEM images and determined the remaining
three parameters (wall loss parameters kp and a, and
fractal dimension dy) by a global optimization procedure
to fit the experimental data.

We showed that excellent agreement between mod-
eled and measured size distributions can be achieved
using the same set of parameters for all three experimen-
tal conditions, and we checked that estimating the
parameters for each experiment individually did not sub-
stantially improve the fit. This creates the foundation for
a model framework that can be applied to more complex
experiments, for example, to investigate the evolution of
aerosol mixing state when secondary aerosol material is
coating the particles.

While the aim of this study was to verify and validate
PartMC, we reach the following broader conclusions.
The fact that our fitted value of a = 0.26 is close to the
theoretically derived value of 0.25 is an excellent indica-
tion that our approach is valid. It would be interesting to
determine the value of kp for other chambers of similar
design (i.e., stainless steel chambers) or of different type
(e.g., teflon chambers). Further, it is likely that for aero-
sols generated as it was done in this study, a fractal
dimension smaller than 3 is appropriate. These hypothe-
ses should be tested on additional chamber datasets.

Currently, the model uses a constant value of fractal
dimension throughout the simulation period. From the
comparison of the model results to the experimental
data, we conclude that using a constant d; value is a
good approximation for simulating coagulating particle
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populations in these experiments. At the same time, the
strong sensitivity of the results to the fractal dimension
value may justify the implementation of a more sophisti-
cated model treatment, which, for example, would allow
the simulation of particle restructuring during more
complex mixing and coating processes. This could be
easily achieved by adding fractal dimension as an addi-
tional per-particle entry in the particle-resolved repre-
sentation using the PartMC model. At the same time,
this would necessitate more detailed particle size meas-
urements to constrain the rate of change of d; during the
evolution of particles in the chamber.
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